Graph-based Dependency Parsing

Ryan McDonald
Google Research
ryanmcd(@google.com

mailto:ryanmcd@google.com
mailto:ryanmcd@google.com

Graph-based Dependency Parsing

Ryan McDonald
Google Research
ryanmcd(@google.com

mailto:ryanmcd@google.com
mailto:ryanmcd@google.com

Dependency

N Parsing

root

will
N
Tomash remain
NM‘Cy w‘
Mr as
%
emeritus

NMOD
[MrTomash will remainj ‘//\IMOD

as a director emeritus a director

Definitions

= {ll,lg,...,lm} Arc label set

X =xpx1...2T, Input sentence

Y Dependency Graph/Tree

Definitions

= {ll,lg,...,lm} Arc label set

X =xpx1...2T, Input sentence

/ Y Dependency Graph/Tree

root

Definitions

Slm} Arclabel set

N 7% Input sentence

Y Dependency Graph/Tree

Graph-based Parsing

Factor the weight/score graphs by subgraphs

[w(Y):HwT\

TEY
_ Y,

T is from a set of subgraphs
of interest, e.g., arcs, adjacent arcs

Product vs. Sum:

Y = argmax H w, = arg max E log w
¥ TEY ¥ TEY

Arc-factored Graph-based Parsing

root

S

Saw

//\\¢

vJohD >Mary

Arc-factored Graph-based Parsing

root .
N Learn to weight arcs
7 saw
SN w(Y) =[] w,
20 0 J ey

Arc-factored Graph-based Parsing

root

\ Learn to weight arcs
‘//' \ w(Y) = H W
' acyY

John > Mary

Y = argmax H Wy,
¥ acYy

Inference/Parsing/Argmax

Arc-factored Graph-based Parsing

root

\ Learn to weight arcs
‘//' \ w(Y) = H W
' acyY

John > Mary
root
Y = arg ;na,x H Wy, o
acY / \
John Mary

Inference/Parsing/Argmax

Arc-factored Projective Parsing

WIi][j][h] = weight of best tree spanning
words i to j rooted at word h

h h’
A B
h
i | |+ |
w(A) x w(B) x wy,,
<
max over k, |, b’ /k\

h’ h

Arc-factored Projective Parsing

WIi][j][h] = weight of best tree spanning
words i to j rooted at word h

(")

Eisner ‘96 A
O(|L|n°) —— O(n® + |LIn?) h h’
- y
A B
h
| | |+ |
w(A) x w(B) x wy,,
<€
max over k, |, i’ /k\
h’ h

Arc-factored Non-projective Parsing

® Non-projective Parsing (McDonald et al '05)
® Inference: O(|L|n?) with Chu-Liu-Edmonds MST alg

® Greedy-Recursive algorithm

root

N Spanning trees

9 saw m

Valid dependency graphs

Arc-factored Non-projective Parsing

® Non-projective Parsing (McDonald et al '05)
® Inference: O(|L|n?) with Chu-Liu-Edmonds MST alg

.] . b
l We win with non-projective algorithms! ... err ...]

root 9

\ Spanning trees
% v\\ il
' Valid dependency graphs

John = Mary

Arc-factored Non-projective Parsing

® Non-projective Parsing (McDonald et al '05)

® |nference: with Chu-Liu-Edmonds MST alg
o) . i
l We win with non-projective algorithms! ... err ...]
root

9

I\IO Snannine trees

[Greedy/Recursive is not what we are used to j

l /AO \\ l Valid dependency graphs

John = Mary

3

® Arc-factored models can be powerful Beyond

® But does not model linguistic reality Arc-factored
® Syntax is not context independent Models

® Arc-factored models can be powerful Beyond

® But does not model linguistic reality Arc-factored
® Syntax is not context independent Models

. ® Arity of a word = # of modifiers in graph
Arity

® Model arity through preference parameters

® Arc-factored models can be powerful Beyond

® But does not model linguistic reality Arc-factored
® Syntax is not context independent Models

. ® Arity of a word = # of modifiers in graph
Arity

® Model arity through preference parameters

Horizontal

Markovization

Vertical/Horizontal
Adjacent arcs

Projective -- Easy

WIi][j][h][a] = weight of best tree spanning words
i to j rooted at word h with arity a

k

Arity terms T

/ $@-| h’
A B
h,a

A :
wg_z x w(B) x wiy, x wi B
Wh
<

max over k, |, h’ /\

Non-projective -- Hard

® McDonald and Satta ‘07
® Arity (even just modified/not-modified) is NP-hard
® Markovization is NP-hard
® Can basically generalize to any non-local info

® (Generalizes Nehaus and Boker ‘97

Arc-factored: non-projective “easier”
Beyond arc-factored: non-projective “harder”

Non-projective Solutions

® |n all cases we augment w(Y)

Arity/Markovization/et
e Calculate w(Y) using: rity/Markovization/etc

® Approximations (Jason’s talk!)
® Exact ILP methods
® Chart-parsing Algorithms

® Re-ranking

e MCMC

Annealing Approximations

(McDonald & Pereira 06)
{w(Y) = H wfj X ﬂJ

® Start with initial guess (4,5, k)

® Make small changes to increase w(Y)

Annealing Approximations

(McDonald & Pereira 06)
{w(Y) = H wfj X ﬂJ

® Start with initial guess (4,5, k)

® Make small changes to increase w(Y)

Initial guess: arg max H wZ
Y (k) —_ Arc

Factored

Annealing Approximations

(McDonald & Pereira 06)
{w(Y) = H wfj X ﬂJ

® Start with initial guess (4,5, k)

® Make small changes to increase w(Y)

Initial guess: arg max H wZ
Y (i,4,k) ——_ Arc

Factored

Until convergence
Find arc change to maximize w(Y)= || wj, x 3

Make the change to guess (53:8)

Annealing Approximations

(McDonald & Pereira 06)
[w(Y) = H wfj X ﬁJ

® Start with initial guess (4,5, k)

® Make small changes to increase w(Y)

Initial guess: arg max H Wy ;

(z7]’k) \ Arc

Factored

Y

Until convergence , ,
8 Good in practice,

but suffers from
Make the change to guess local maxima

Find arc change to maximize

Integer Linear Programming (ILP)

(Riedel and Clarke 06, Kubler et al 09, Martins, Smith and Xing 09)

® An ILP is an optimization problem with:
® A linear objective function
® A set of linear constraints

® |LPs are NP-hard in worst-case, but well
understood w/ fast algorithms in practice

® Dependency parsing can be cast as an |ILP

Note: we will work in the log space

Y = argmax Z log wfj
YEYIEX) (i 5,k)

Arc-factored Dependency Parsing as an ILP
(from Kubler, MDonald and Nivre 2009)

Define integer variables:
CL,Z- S {07 1}

ay; = 1iff (i,j,k) €Y

bij S {07 1}

bij::llffilj‘iﬁ...%ﬁjéy

Arc-Factored Dependency Parsing as an ILP

(from Kubler, McDonald and Nivre 2009)

k k
max E a;; X logwy;

1,7,k
such that:
ak =0 Vj:Zafszl
. \ Vi, j, kb —ay; >0

Constrain arc

assighments to \V/@], k 2b ik — b’lJ — bjk]_

produce a tree

- g \V/me:()

Arc-Factored Dependency Parsing as an |ILP
(from Kubler, McDonald and Nivre 2009)

k k
max g a;; X logwy;

1,0,k

4)
Can add non-local constraints & preference parameters

Riedel & Clarke ’06, Martins et al. 09

\ J
AR i .
’I:,k ’L,k
4) \V/Z,], k . sz — a,,;j Z O

Constrain arc

assighments to \V/i,j, k . zbzk — b’lJ — b]k Z —1

produce a tree

- g \V/me:()

Dynamic Prog/Chart-based methods

Dynamic Prog/Chart-based methods

® Question:are there efficient non-projective chart parsing
algorithms for unrestricted trees!?

® Most likely not: we could just augment them to get
tractable non-local non-projective models

Dynamic Prog/Chart-based methods

® Question:are there efficient non-projective chart parsing
algorithms for unrestricted trees!?

® Most likely not: we could just augment them to get
tractable non-local non-projective models

® Gomez-Rodriguez et al. 09, Kuhlmann 09
® For well-nested dependency trees of gap-degree |
® Kuhlmann & Nivre: Accounts for >> 99% of trees

® O(n’) deductive/chart-parsing algorithms

Dynamic Prog/Chart-based methods

® Question:are there efficient non-projective chart parsing
algorithms for unrestricted trees?

® Most likely not: we could just augment them to get
tractable non-local non-projective models

® Gomez-Rodriguez et al. 09, Kuhlmann 09
® For well-nested dependency trees of gap-degree |
® Kuhlmann & Nivre: Accounts for >> 99% of trees

® O(n’) deductive/chart-parsing algorithms

Chart-parsing == easy to extend beyond arc-factored assumptions |

What is next!

® Getting back to grammars!?
® Non-projective unsupervised parsing?

e Efficiency?

Getting Back to Grammars

® Almost all research has been grammar-less
® All possible structures permissible

® Just learn to discriminate good from bad

® Unlike SOTA phrase-based methods

e All explicitly use (derived) grammar

Getting Back to Grammars

Getting Back to Grammars

® Projective == CF Dependency Grammars

® Gaifman (65), Eisner & Blatz (07), Johnson (07)

Getting Back to Grammars

® Projective == CF Dependency Grammars
® Gaifman (65), Eisner & Blatz (07), Johnson (07)
® Mildly context sensitive dependency grammars
® Restricted chart parsing for well-nested/gap-degree |

® Bodirsky et al. (05): capture LTAG derivations

Getting Back to Grammars

® Projective == CF Dependency Grammars
® Gaifman (65), Eisner & Blatz (07), Johnson (07)

® Mildly context sensitive dependency grammars
® Restricted chart parsing for well-nested/gap-degree |
® Bodirsky et al. (05): capture LTAG derivations

® |LP == Constraint Dependency Grammars (Maruyama 1990)
® Both just put constraints on output

® CDG constraints can be added to ILP (hard/soft)

® Annealing algs == repair algs in CDGs
g alg P g

Getting Back to Grammars

® Projective == CF Dependency Grammars
® Gaifman (65), Eisner & Blatz (07), Johnson (07)

® Mildly context sensitive dependency grammars

® Questions ee |

o |l. Can we flush out the connections further?
2. Can we use grammars to improve accuracy
and parsing speeds!

o |L 1990)

® Both just put constraints on output
® CDG constraints can be added to ILP (hard/soft)
® Annealing algs == repair algs in CDGs

Non-projective Unsupervised Parsing

® McDonald and Satta 07

® Dependency model w/o valence (arity) is tractable
® Not true w/ valence

® Klein & Manning 04, Smith 06, Headden et al. 09
e All projective

® Valencet++ required for good performance

Non-projective Unsupervised Parsing

® McDonald and Satta 07

® Dependency model w/o valence (arity) is tractable
® Not true w/ valence

® Klein & Manning 04, Smith 06, Headden et al. 09
e All projective

® Valence++ required for good performance

Non-projective Unsupervised Systems!?

Efficiency / Resources

Swedish
O(nL) O(n*+nL) O(nL? O(n’L?) O(n?%kl?)
MST Joint
Malt MST MST MST Joint | Feat Hash
Joint pipeline joint Feat Hash | Coarse to
Fine
LAS 84.6 82.0 83.9 84.3 84.1
Parse time - .00 ~125.00 ~30.00 4.50
Model size - 88 Mb 200 Mb |1 Mb |5 Mb
features - |16 M 30 M 30 M 30 M

Pretty good, but still not there! -- A*?, More pruning? E

Summary

Summary
® VWhere we’ve been

® Arc-factored: Eisner / MST
® Beyond arc-factored: NP-hard
® Approximations

o |[LP

® Chart-parsing on defined subset

Summary
® VWhere we’ve been

® Arc-factored: Eisner / MST
® Beyond arc-factored: NP-hard
® Approximations

o |[LP

® Chart-parsing on defined subset
® What’s next
® The return of grammars!
® Non-projective unsupervised parsing

® Making models practical on web-scale

