
Graph-based Dependency Parsing

Ryan McDonald
Google Research
ryanmcd@google.com

mailto:ryanmcd@google.com
mailto:ryanmcd@google.com

Graph-based Dependency Parsing

Ryan McDonald
Google Research
ryanmcd@google.com

Read
er’s

 Dige
st

mailto:ryanmcd@google.com
mailto:ryanmcd@google.com

Dependency
Parsing

Mr Tomash will remain
as a director emeritus

Mr

Tomash

will

remain

as

director

emeritus

SBJ

NMOD

VC

PP

NP

NMOD

a

NMOD

root
ROOT

Definitions

Y

L = {l1, l2, . . . , lm} Arc label set

Input sentence

Dependency Graph/Tree

X = x0x1 . . . xn

Definitions

Y

L = {l1, l2, . . . , lm} Arc label set

Input sentence

Dependency Graph/Tree

X = x0x1 . . . xn

root

Definitions

(i, j, k) ∈ Y xi → xj

lk
indicates

Y

L = {l1, l2, . . . , lm} Arc label set

Input sentence

Dependency Graph/Tree

X = x0x1 . . . xn

Graph-based Parsing

τ is from a set of subgraphs
of interest, e.g., arcs, adjacent arcs

Factor the weight/score graphs by subgraphs

w(Y) =
∏

τ∈Y

wτ

Y = arg max
Y

∏

τ∈Y

wτ = arg max
Y

∑

τ∈Y

log wτ

Product vs. Sum:

Arc-factored Graph-based Parsing

John

saw

Mary

root

Arc-factored Graph-based Parsing

John

saw

Mary

root

9

9

10

30 30

020
11

3

Learn to weight arcs

w(Y) =
∏

a∈Y

wa

Arc-factored Graph-based Parsing

John

saw

Mary

root

9

9

10

30 30

020
11

3

Learn to weight arcs

w(Y) =
∏

a∈Y

wa

Y = arg max
Y

∏

a∈Y

wa

Inference/Parsing/Argmax

Arc-factored Graph-based Parsing

John

saw

Mary

root

9

9

10

30 30

020
11

3

Learn to weight arcs

w(Y) =
∏

a∈Y

wa

John

saw

Mary

root

Y = arg max
Y

∏

a∈Y

wa

Inference/Parsing/Argmax

Arc-factored Projective Parsing
W[i][j][h] = weight of best tree spanning

words i to j rooted at word h

max over k, l, h’

w(A) × w(B) × w
k
hh′

A B

i l l+1 j

hh’

k

A B

i l l+1 j

h h’

k

h

i j

Arc-factored Projective Parsing
W[i][j][h] = weight of best tree spanning

words i to j rooted at word h

max over k, l, h’

w(A) × w(B) × w
k
hh′

A B

i l l+1 j

hh’

k

A B

i l l+1 j

h h’

k

h

i j

O(|L|n5) O(n3 + |L|n2)

Eisner ‘96

Arc-factored Non-projective Parsing

• Non-projective Parsing (McDonald et al ’05)

• Inference: O(|L|n2) with Chu-Liu-Edmonds MST alg

• Greedy-Recursive algorithm

John

saw

Mary

root

9

9

10

30 30

020
11

3

Spanning trees

Valid dependency graphs

Arc-factored Non-projective Parsing

• Non-projective Parsing (McDonald et al ’05)

• Inference: O(|L|n2) with Chu-Liu-Edmonds MST alg

• Greedy-Recursive algorithm

John

saw

Mary

root

9

9

10

30 30

020
11

3

Spanning trees

Valid dependency graphs

We win with non-projective algorithms! ... err ...

Arc-factored Non-projective Parsing

• Non-projective Parsing (McDonald et al ’05)

• Inference: O(|L|n2) with Chu-Liu-Edmonds MST alg

• Greedy-Recursive algorithm

John

saw

Mary

root

9

9

10

30 30

020
11

3

Spanning trees

Valid dependency graphs

We win with non-projective algorithms! ... err ...

Greedy/Recursive is not what we are used to

Beyond
Arc-factored

Models

• Arc-factored models can be powerful

• But does not model linguistic reality

• Syntax is not context independent

Beyond
Arc-factored

Models

• Arc-factored models can be powerful

• But does not model linguistic reality

• Syntax is not context independent

Arity • Arity of a word = # of modifiers in graph

• Model arity through preference parameters

Beyond
Arc-factored

Models

• Arc-factored models can be powerful

• But does not model linguistic reality

• Syntax is not context independent

Arity • Arity of a word = # of modifiers in graph

• Model arity through preference parameters

is the root node 0, and w1
i,j = 0 otherwise. Fur-

thermore, we set φ(i) = 1 for each i ∈ Vx. This
construction can be clearly carried out in log-space.

Note that each T ∈ T (G(φ)
x) must be a monadic

tree with weight equal to either 0 or 1. It is not dif-
ficult to see that if w(T) = 1, then when we remove
the root node 0 from T we obtain a Hamiltonian path
in G. Conversely, each Hamiltonian path in G can
be extended to a spanning tree T ∈ T (G(φ)

x) with
w(T) = 1, by adding the root node 0.

Using the above observations, it can be shown that
the solution of the argmax problem for G(φ)

x pro-
vides some Hamiltonian directed path in G. The lat-
ter search problem is FNP-hard, and is unlikely to
be solved in polynomial time. Furthermore, quan-
tity Zx provides the count of the Hamiltonian di-
rected paths in G, and for each i ∈ V , the expecta-
tion 〈(0, i)1〉x provides the count of the Hamiltonian
directed paths in G starting from node i. Both these
counting problems are #P-hard, and very unlikely to
have polynomial time solutions.

5.2 Vertical and Horizontal Markovization

In general, we would like to say that every depen-
dency decision is dependent on every other edge in
a graph. However, modeling dependency parsing in
such a manner would be a computational nightmare.
Instead, we would like to make a Markov assump-
tion over the edges of the tree, in a similar way that
a Markov assumption can be made for sequential
classification problems in order to ensure tractable
learning and inference.

Klein and Manning (2003) distinguish between
two kinds of Markovization for unlexicalized CFG
parsing. The first is vertical Markovization, which
makes the generation of a non-terminal dependent
on other non-terminals that have been generated at
different levels in the phrase-structure tree. The
second is horizontal Markovization, which makes
the generation of a non-terminal dependent on other
non-terminals that have been generated at the same
level in the tree.

For dependency parsing there are analogous no-
tions of vertical and horizontal Markovization for a
given edge (i, j)k. First, let us define the vertical and
horizontal neighbourhoods of (i, j)k. The vertical
neighbourhood includes all edges in any path from

Figure 4: Vertical and Horizontal neighbourhood for
the edge from will to remain.

the root to a leaf that passes through (i, j)k. The hor-
izontal neighbourhood contains all edges (i, j′)k′ .
Figure 4 graphically displays the vertical and hor-
izontal neighbourhoods for an edge in the depen-
dency graph from Figure 1.

Vertical and horizontal Markovization essentially
allow the score of the graph to factor over a larger
scope of edges, provided those edges are in the same
vertical or horizontal neighbourhood. A dth order
factorization is one in which the score factors only
over the d nearest edges in the neighbourhoods. In
McDonald and Pereira (2006), it was shown that
non-projective dependency parsing with horizontal
Markovization is FNP-hard. In this study we com-
plete the picture and show that vertical Markoviza-
tion is also FNP-hard.

Consider a first-order vertical Markovization in
which the score for a dependency graph factors over
pairs of vertically adjacent edges2,

w(T) =
∏

(h,i)k,(i,j)k′∈ET

k
hiw

k′
ij

where k
hiw

k′
ij is the weight of including both edges

(h, i)k and (i, j)k′ in the dependency graph. Note
that this formulation does not include any contribu-
tions from dependencies that have no vertically adja-
cent neighbours, i.e., any edge (0, i)k such that there
is no edge (i, j)k′ in the graph. We can easily rec-
tify this by inserting a second root node, say 0′, and
including the weights k

0′0w
k′
0i . To ensure that only

2McDonald and Pereira (2006) define this as a second-order
Markov assumption. This is simply a difference in terminology
and does not represent any meaningful distinction.

Markovization
Vertical/Horizontal

Adjacent arcs

Projective -- Easy

W[i][j][h][a] = weight of best tree spanning words
i to j rooted at word h with arity a

A B

i l l+1 j

h,a-1h’

k

A B

i l l+1 j

h,a-1 h’

k

h,a

i j

max over k, l, h’

w(A)
wa−1

h

× w(B)× wk
hh′ × wa

h

Arity terms

Non-projective -- Hard

• McDonald and Satta ‘07

• Arity (even just modified/not-modified) is NP-hard

• Markovization is NP-hard

• Can basically generalize to any non-local info

• Generalizes Nehaus and Boker ‘97

Arc-factored: non-projective “easier”
Beyond arc-factored: non-projective “harder”

Non-projective Solutions
• In all cases we augment w(Y)

• Calculate w(Y) using:

• Approximations (Jason’s talk!)

• Exact ILP methods

• Chart-parsing Algorithms

• Re-ranking

• MCMC

w(Y) =
∏

(i,j,k)

wk
ij × β

Arity/Markovization/etc

Annealing Approximations
(McDonald & Pereira 06)

• Start with initial guess

• Make small changes to increase w(Y)

w(Y) =
∏

(i,j,k)

wk
ij × β

Annealing Approximations
(McDonald & Pereira 06)

• Start with initial guess

• Make small changes to increase w(Y)

w(Y) =
∏

(i,j,k)

wk
ij × β

Initial guess: arg max
Y

∏

(i,j,k)

wk
ij Arc

Factored

Annealing Approximations
(McDonald & Pereira 06)

• Start with initial guess

• Make small changes to increase w(Y)

w(Y) =
∏

(i,j,k)

wk
ij × β

Initial guess: arg max
Y

∏

(i,j,k)

wk
ij Arc

Factored

Until convergence
Find arc change to maximize

 Make the change to guess

w(Y) =
∏

(i,j,k)

wk
ij × β

Annealing Approximations
(McDonald & Pereira 06)

• Start with initial guess

• Make small changes to increase w(Y)

w(Y) =
∏

(i,j,k)

wk
ij × β

Initial guess: arg max
Y

∏

(i,j,k)

wk
ij Arc

Factored

Until convergence
Find arc change to maximize

 Make the change to guess

w(Y) =
∏

(i,j,k)

wk
ij × β

Good in practice,
but suffers from

local maxima

Integer Linear Programming (ILP)
(Riedel and Clarke 06, Kubler et al 09, Martins, Smith and Xing 09)

• An ILP is an optimization problem with:

• A linear objective function

• A set of linear constraints

• ILPs are NP-hard in worst-case, but well
understood w/ fast algorithms in practice

• Dependency parsing can be cast as an ILP

Note: we will work in the log space
Y = arg max

Y ∈Y (GX)

∑

(i,j,k)

log wk
ij

Arc-factored Dependency Parsing as an ILP
(from Kubler, MDonald and Nivre 2009)

ak
ij ∈ {0, 1}

bij ∈ {0, 1}

ak
ij = 1 iff (i, j, k) ∈ Y

Define integer variables:

bij = 1 iff xi → . . .→ xj ∈ Y

Arc-Factored Dependency Parsing as an ILP
(from Kubler, McDonald and Nivre 2009)

such that:
∑

i,k

ak
i0 = 0 ∀j :

∑

i,k

ak
ij = 1

maxa
∑

i,j,k

ak
ij × log wk

ij

∀i, j, k : bij − ak
ij ≥ 0

∀i : bii = 0
∀i, j, k : 2bik − bij − bjk ≥ −1

Constrain arc
assignments to
produce a tree

Arc-Factored Dependency Parsing as an ILP
(from Kubler, McDonald and Nivre 2009)

such that:
∑

i,k

ak
i0 = 0 ∀j :

∑

i,k

ak
ij = 1

maxa
∑

i,j,k

ak
ij × log wk

ij

∀i, j, k : bij − ak
ij ≥ 0

∀i : bii = 0
∀i, j, k : 2bik − bij − bjk ≥ −1

Constrain arc
assignments to
produce a tree

Can add non-local constraints & preference parameters
Riedel & Clarke ’06, Martins et al. 09

Dynamic Prog/Chart-based methods

Dynamic Prog/Chart-based methods

• Question: are there efficient non-projective chart parsing
algorithms for unrestricted trees?

• Most likely not: we could just augment them to get
tractable non-local non-projective models

Dynamic Prog/Chart-based methods

• Question: are there efficient non-projective chart parsing
algorithms for unrestricted trees?

• Most likely not: we could just augment them to get
tractable non-local non-projective models

• Gomez-Rodriguez et al. 09, Kuhlmann 09

• For well-nested dependency trees of gap-degree 1

• Kuhlmann & Nivre: Accounts for >> 99% of trees

• O(n7) deductive/chart-parsing algorithms

Dynamic Prog/Chart-based methods

• Question: are there efficient non-projective chart parsing
algorithms for unrestricted trees?

• Most likely not: we could just augment them to get
tractable non-local non-projective models

• Gomez-Rodriguez et al. 09, Kuhlmann 09

• For well-nested dependency trees of gap-degree 1

• Kuhlmann & Nivre: Accounts for >> 99% of trees

• O(n7) deductive/chart-parsing algorithms

Chart-parsing == easy to extend beyond arc-factored assumptions

What is next?

• Getting back to grammars?

• Non-projective unsupervised parsing?

• Efficiency?

Getting Back to Grammars

• Almost all research has been grammar-less

• All possible structures permissible

• Just learn to discriminate good from bad

• Unlike SOTA phrase-based methods

• All explicitly use (derived) grammar

Getting Back to Grammars

Getting Back to Grammars

• Projective == CF Dependency Grammars

• Gaifman (65), Eisner & Blatz (07), Johnson (07)

Getting Back to Grammars

• Projective == CF Dependency Grammars

• Gaifman (65), Eisner & Blatz (07), Johnson (07)

• Mildly context sensitive dependency grammars

• Restricted chart parsing for well-nested/gap-degree 1

• Bodirsky et al. (05): capture LTAG derivations

Getting Back to Grammars

• Projective == CF Dependency Grammars

• Gaifman (65), Eisner & Blatz (07), Johnson (07)

• Mildly context sensitive dependency grammars

• Restricted chart parsing for well-nested/gap-degree 1

• Bodirsky et al. (05): capture LTAG derivations

• ILP == Constraint Dependency Grammars (Maruyama 1990)

• Both just put constraints on output

• CDG constraints can be added to ILP (hard/soft)

• Annealing algs == repair algs in CDGs

Getting Back to Grammars

• Projective == CF Dependency Grammars

• Gaifman (65), Eisner & Blatz (07), Johnson (07)

• Mildly context sensitive dependency grammars

• Restricted chart parsing for well-nested/gap-degree 1

• Bodirsky et al. (05): capture LTAG derivations

• ILP == Constraint Dependency Grammars (Maruyama 1990)

• Both just put constraints on output

• CDG constraints can be added to ILP (hard/soft)

• Annealing algs == repair algs in CDGs

Questions
1. Can we flush out the connections further?
2. Can we use grammars to improve accuracy
 and parsing speeds?

Non-projective Unsupervised Parsing

• McDonald and Satta 07

• Dependency model w/o valence (arity) is tractable

• Not true w/ valence

• Klein & Manning 04, Smith 06, Headden et al. 09

• All projective

• Valence++ required for good performance

Non-projective Unsupervised Parsing

• McDonald and Satta 07

• Dependency model w/o valence (arity) is tractable

• Not true w/ valence

• Klein & Manning 04, Smith 06, Headden et al. 09

• All projective

• Valence++ required for good performance

Non-projective Unsupervised Systems?

Efficiency / Resources

Malt
Joint

MST
pipeline

MST
joint

MST Joint
Feat Hash

MST Joint
Feat Hash
Coarse to

Fine

LAS 84.6 82.0 83.9 84.3 84.1

Parse time - 1.00 ~125.00 ~30.00 4.50

Model size - 88 Mb 200 Mb 11 Mb 15 Mb

features - 16 M 30 M 30 M 30 M

Swedish
O(n3 + nL) O(n3L2) O(n3L2) O(n2kl2)

Pretty good, but still not there! -- A*?, More pruning?

O(nL)

Summary

Summary
• Where we’ve been

• Arc-factored: Eisner / MST

• Beyond arc-factored: NP-hard

• Approximations

• ILP

• Chart-parsing on defined subset

Summary
• Where we’ve been

• Arc-factored: Eisner / MST

• Beyond arc-factored: NP-hard

• Approximations

• ILP

• Chart-parsing on defined subset

• What’s next

• The return of grammars?

• Non-projective unsupervised parsing

• Making models practical on web-scale

