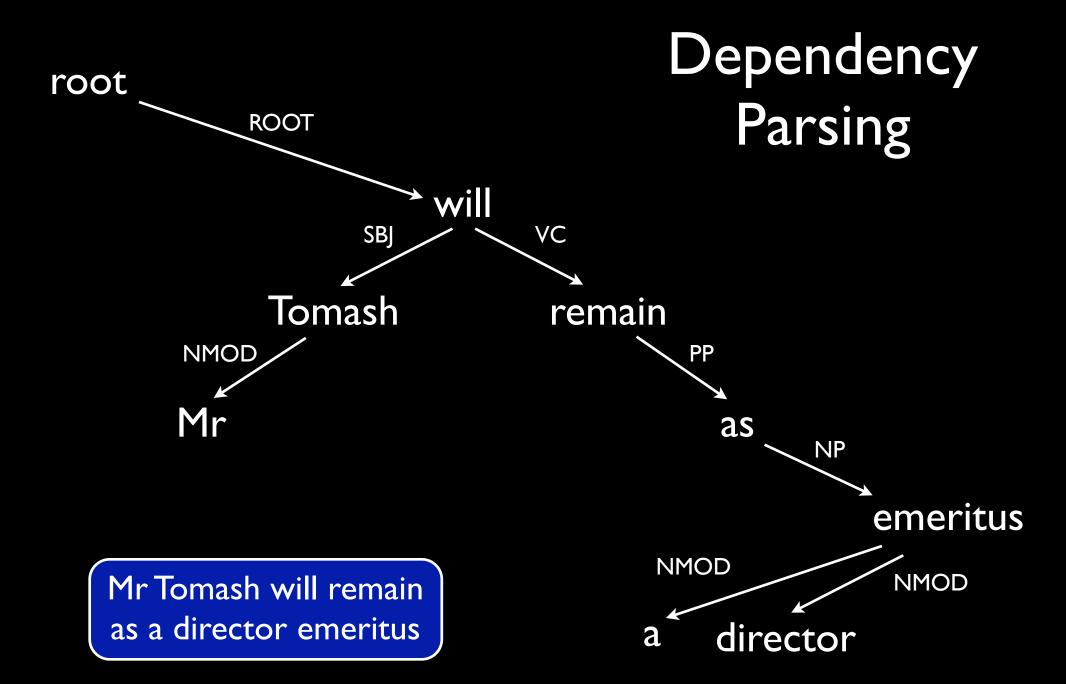
Graph-based Dependency Parsing

Ryan McDonald
Google Research
ryanmcd@google.com

Reader's Digest

Graph-based Dependency Parsing

Ryan McDonald
Google Research
ryanmcd@google.com



Definitions

$$L=\{l_1,l_2,\ldots,l_m\}$$
 Arc label set $X=x_0x_1\ldots x_n$ Input sentence Y Dependency Graph/Tree

Definitions

$$L=\{l_1,l_2,\ldots,l_m\}$$
 Arc label set $X=x_0x_1\ldots x_n$ Input sentence Y Dependency Graph/Tree

Definitions

$$L=\{l_1,l_2,\ldots,l_m\}$$
 Arc label set $X=x_0x_1\ldots x_n$ Input sentence Y Dependency Graph/Tree

$$(i,j,k) \in Y \quad \text{indicates} \quad x_i \stackrel{l_k}{\rightarrow} x_j$$

Graph-based Parsing

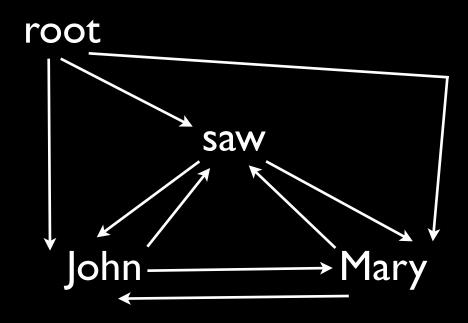
Factor the weight/score graphs by subgraphs

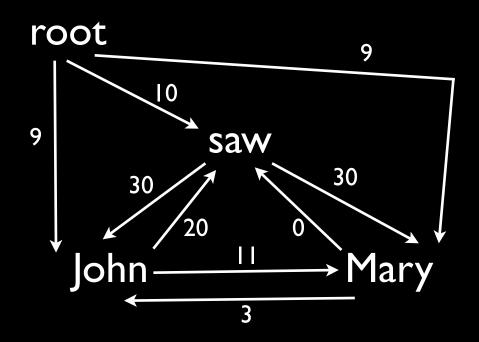
$$\left(w(Y) = \prod_{\tau \in Y} w_{\tau} \right)$$

au is from a set of subgraphs of interest, e.g., arcs, adjacent arcs

Product vs. Sum:

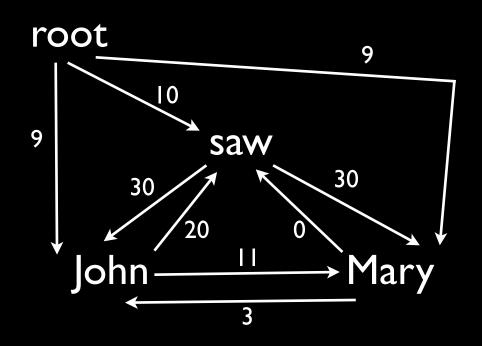
$$Y = \underset{Y}{\operatorname{arg\,max}} \prod_{\tau \in Y} w_{\tau} = \underset{Y}{\operatorname{arg\,max}} \sum_{\tau \in Y} \log w_{\tau}$$





Learn to weight arcs

$$w(Y) = \prod_{a \in Y} w_a$$

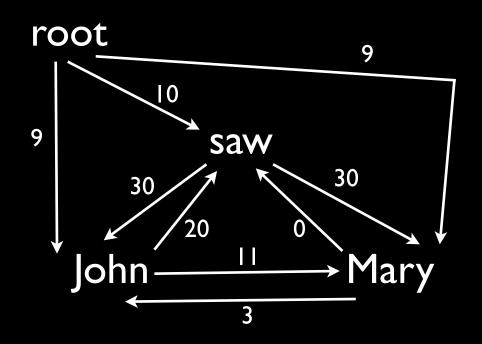


Learn to weight arcs

$$w(Y) = \prod_{a \in Y} w_a$$

$$Y = \underset{Y}{\operatorname{arg\,max}} \prod_{a \in Y} w_a$$

Inference/Parsing/Argmax



Learn to weight arcs

$$w(Y) = \prod_{a \in Y} w_a$$

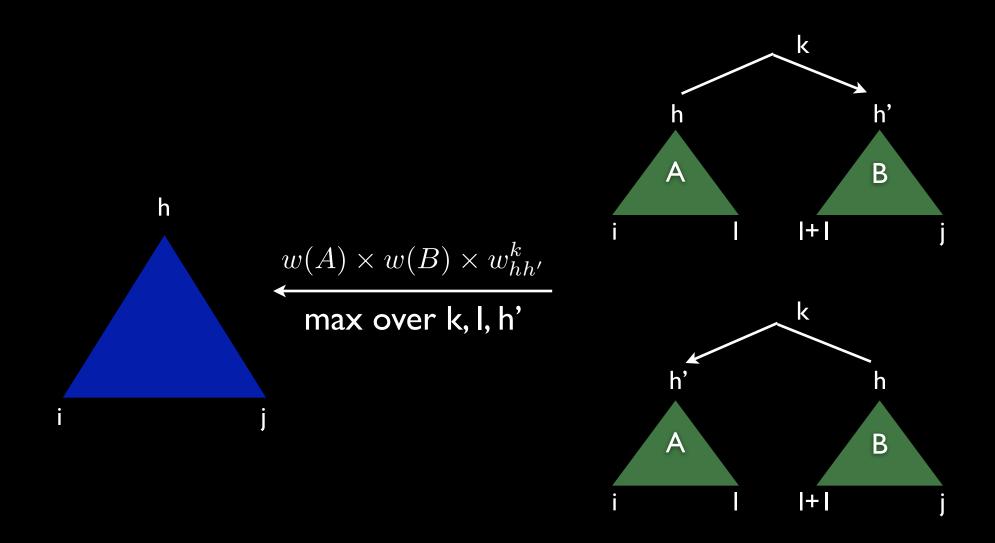
$$Y = \arg\max_{Y} \prod_{a \in Y} w_a$$

root saw John Mary

Inference/Parsing/Argmax

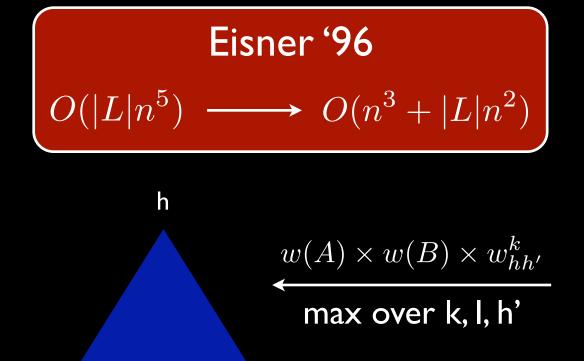
Arc-factored Projective Parsing

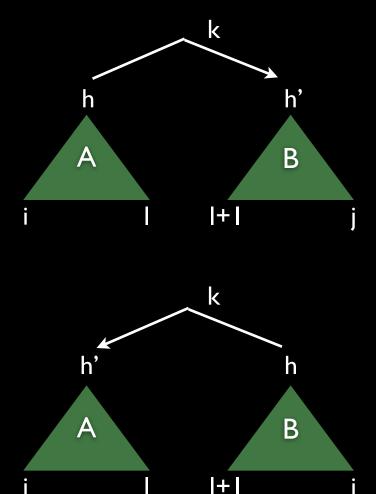
W[i][j][h] = weight of best tree spanning words i to j rooted at word h



Arc-factored Projective Parsing

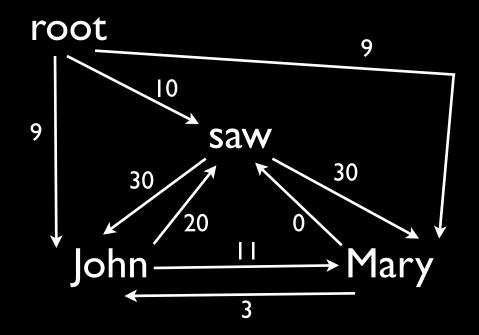
W[i][j][h] = weight of best tree spanning words i to j rooted at word h





Arc-factored Non-projective Parsing

- Non-projective Parsing (McDonald et al '05)
 - Inference: O(|L|n²) with Chu-Liu-Edmonds MST alg
 - Greedy-Recursive algorithm



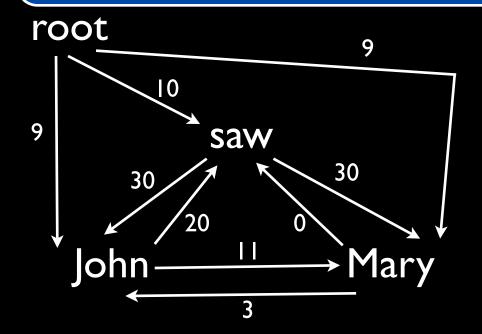
Spanning trees

Valid dependency graphs

Arc-factored Non-projective Parsing

- Non-projective Parsing (McDonald et al '05)
 - Inference: O(|L|n²) with Chu-Liu-Edmonds MST alg
 - Greedy-Recursive algorithm

We win with non-projective algorithms! ... err ...



Spanning trees

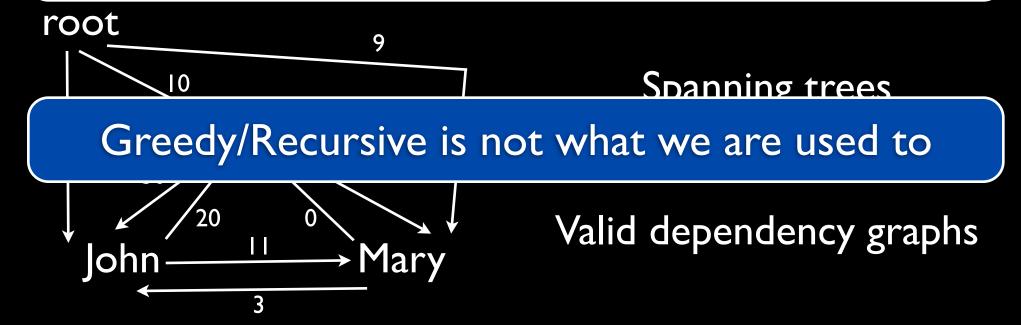
|||

Valid dependency graphs

Arc-factored Non-projective Parsing

- Non-projective Parsing (McDonald et al '05)
 - Inference: O(|L|n²) with Chu-Liu-Edmonds MST alg
 - Greedy-Recursive algorithm

We win with non-projective algorithms! ... err ...



- Arc-factored models can be powerful
- But does not model linguistic reality
 - Syntax is not context independent

Beyond Arc-factored Models

- Arc-factored models can be powerful
- But does not model linguistic reality
 - Syntax is not context independent

Beyond Arc-factored Models

Arity

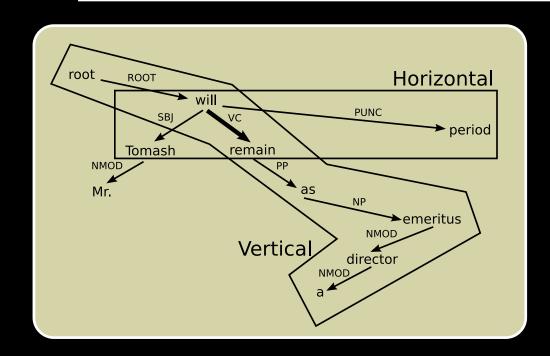
- Arity of a word = # of modifiers in graph
- Model arity through preference parameters

- Arc-factored models can be powerful
- But does not model linguistic reality
 - Syntax is not context independent

Beyond Arc-factored Models

Arity

- Arity of a word = # of modifiers in graph
- Model arity through preference parameters

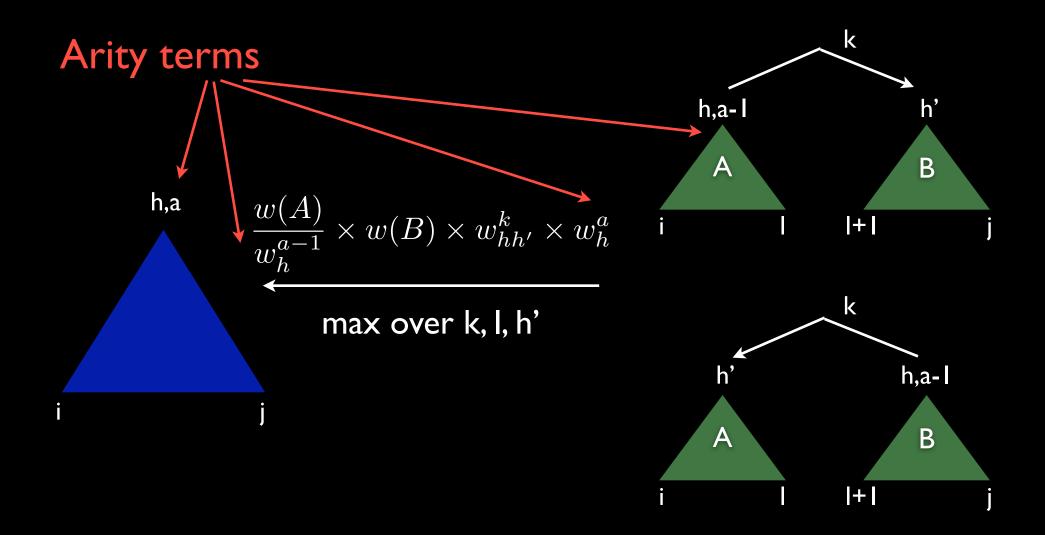


Markovization

Vertical/Horizontal Adjacent arcs

Projective -- Easy

W[i][j][h][a] = weight of best tree spanning words i to j rooted at word h with arity a



Non-projective -- Hard

- McDonald and Satta '07
 - Arity (even just modified/not-modified) is NP-hard
 - Markovization is NP-hard
 - Can basically generalize to any non-local info
 - Generalizes Nehaus and Boker '97

Arc-factored: non-projective "easier" Beyond arc-factored: non-projective "harder"

Non-projective Solutions

In all cases we augment w(Y)

$$w(Y) = \prod_{(i,j,k)} w_{ij}^k \times \beta$$

Arity/Markovization/etc

- Calculate w(Y) using:
 - Approximations (Jason's talk!)
 - Exact ILP methods
 - Chart-parsing Algorithms
 - Re-ranking
 - MCMC

(McDonald & Pereira 06)

- Start with initial guess
- Make small changes to increase w(Y)

(McDonald & Pereira 06)

- Start with initial guess
- Make small changes to increase w(Y)

Initial guess:
$$\underset{Y}{\operatorname{arg\,max}} \prod_{(i,j,k)} w_{ij}^k$$
 Arc Factored

 $w(Y) = \prod w_{ij}^k \times \beta$

(i,j,k)

(McDonald & Pereira 06)

- Start with initial guess
- Make small changes to increase w(Y)

Initial guess:
$$\underset{Y}{\operatorname{arg\,max}} \prod w_{ij}^k$$
 Arc Factored

Until convergence

Find arc change to maximize $w(Y) = w_{ij}^k \times \beta$ Make the change to guess

$$w(Y) = \prod_{(i,j,k)} w_{ij}^k \times \beta$$

 $w(Y) = \prod w_{ij}^k \times \beta$

(i,j,k)

(McDonald & Pereira 06)

- Start with initial guess
- Make small changes to increase w(Y)

Initial guess:
$$\underset{Y}{\operatorname{arg\,max}} \prod w_{ij}^k$$
 Arc Factored

Until convergence

Find arc change to maximize

Make the change to guess

Good in practice, but suffers from local maxima

 $w(Y) = \int w_{ij}^k \times \beta$

(i,j,k)

Integer Linear Programming (ILP)

(Riedel and Clarke 06, Kubler et al 09, Martins, Smith and Xing 09)

- An ILP is an optimization problem with:
 - A linear objective function
 - A set of linear constraints
- ILPs are NP-hard in worst-case, but well understood w/ fast algorithms in practice
- Dependency parsing can be cast as an ILP

Note: we will work in the log space

$$Y = \underset{Y \in Y(G_X)}{\operatorname{arg max}} \sum_{(i,j,k)} \log w_{ij}^k$$

Arc-factored Dependency Parsing as an ILP

(from Kubler, MDonald and Nivre 2009)

Define integer variables:

$$a_{ij}^k \in \{0, 1\}$$

$$a_{ij}^k = 1 \text{ iff } (i, j, k) \in Y$$

$$b_{ij} \in \{0, 1\}$$

$$b_{ij} = 1 \text{ iff } x_i \to \ldots \to x_j \in Y$$

Arc-Factored Dependency Parsing as an ILP

(from Kubler, McDonald and Nivre 2009)

$$\max_{\mathbf{a}} \sum_{i,j,k} a_{ij}^k \times \log w_{ij}^k$$

such that:

$$\sum_{i,k} a_{i0}^k = 0 \qquad \forall j : \sum_{i,k} a_{ij}^k = 1$$

Constrain arc assignments to produce a tree

$$\forall i, j, k : b_{ij} - a_{ij}^k \ge 0$$

$$\forall i, j, k : 2b_{ik} - b_{ij} - b_{jk} \ge -1$$

$$\forall i : b_{ii} = 0$$

Arc-Factored Dependency Parsing as an ILP

(from Kubler, McDonald and Nivre 2009)

$$\max_{\mathbf{a}} \sum_{i,j,k} a_{ij}^k \times \log w_{ij}^k$$

Can add non-local constraints & preference parameters Riedel & Clarke '06, Martins et al. 09

$$i,k$$
 i,k

Constrain arc assignments to produce a tree

$$\forall i, j, k : b_{ij} - a_{ij}^k \ge 0$$

$$\forall i, j, k : 2b_{ik} - b_{ij} - b_{jk} \ge -1$$

$$\forall i : b_{ii} = 0$$

- Question: are there efficient non-projective chart parsing algorithms for unrestricted trees?
 - Most likely not: we could just augment them to get tractable non-local non-projective models

- Question: are there efficient non-projective chart parsing algorithms for unrestricted trees?
 - Most likely not: we could just augment them to get tractable non-local non-projective models
- Gomez-Rodriguez et al. 09, Kuhlmann 09
 - For well-nested dependency trees of gap-degree I
 - Kuhlmann & Nivre: Accounts for >> 99% of trees
 - $O(n^7)$ deductive/chart-parsing algorithms

- Question: are there efficient non-projective chart parsing algorithms for unrestricted trees?
 - Most likely not: we could just augment them to get tractable non-local non-projective models
- Gomez-Rodriguez et al. 09, Kuhlmann 09
 - For well-nested dependency trees of gap-degree I
 - Kuhlmann & Nivre: Accounts for >> 99% of trees
 - O(n⁷) deductive/chart-parsing algorithms

Chart-parsing == easy to extend beyond arc-factored assumptions

What is next?

- Getting back to grammars?
- Non-projective unsupervised parsing?
- Efficiency?

- Almost all research has been grammar-less
 - All possible structures permissible
 - Just learn to discriminate good from bad
- Unlike SOTA phrase-based methods
 - All explicitly use (derived) grammar

- Projective == CF Dependency Grammars
 - Gaifman (65), Eisner & Blatz (07), Johnson (07)

- Projective == CF Dependency Grammars
 - Gaifman (65), Eisner & Blatz (07), Johnson (07)
- Mildly context sensitive dependency grammars
 - Restricted chart parsing for well-nested/gap-degree I
 - Bodirsky et al. (05): capture LTAG derivations

- Projective == CF Dependency Grammars
 - Gaifman (65), Eisner & Blatz (07), Johnson (07)
- Mildly context sensitive dependency grammars
 - Restricted chart parsing for well-nested/gap-degree I
 - Bodirsky et al. (05): capture LTAG derivations
- ILP == Constraint Dependency Grammars (Maruyama 1990)
 - Both just put constraints on output
 - CDG constraints can be added to ILP (hard/soft)
 - Annealing algs == repair algs in CDGs

- Projective == CF Dependency Grammars
 - Gaifman (65), Eisner & Blatz (07), Johnson (07)
- Mildly context sensitive dependency grammars
 - Questions
 - I. Can we flush out the connections further?
 - 2. Can we use grammars to improve accuracy and parsing speeds?
 - Both just put constraints on output
 - CDG constraints can be added to ILP (hard/soft)
 - Annealing algs == repair algs in CDGs

ee l

1990)

Non-projective Unsupervised Parsing

- McDonald and Satta 07
 - Dependency model w/o valence (arity) is tractable
 - Not true w/ valence
- Klein & Manning 04, Smith 06, Headden et al. 09
 - All projective
 - Valence++ required for good performance

Non-projective Unsupervised Parsing

- McDonald and Satta 07
 - Dependency model w/o valence (arity) is tractable
 - Not true w/ valence
- Klein & Manning 04, Smith 06, Headden et al. 09
 - All projective
 - Valence++ required for good performance

Non-projective Unsupervised Systems?

Swedish

Efficiency / Resources

	O(nL)	$O(n^3 + nL)$	$O(n^3L^2)$	$O(n^3L^2)$	$O(n^2kl^2)$
	Malt Joint	MST pipeline	MST joint	MST Joint Feat Hash	MST Joint Feat Hash Coarse to Fine
LAS	84.6	82.0	83.9	84.3	84.1
Parse time	-	1.00	~125.00	~30.00	4.50
Model size	-	88 Mb	200 Mb	II Mb	15 Mb
# features	-	16 M	30 M	30 M	30 M

Pretty good, but still not there! -- A*?, More pruning?

Summary

Summary

- Where we've been
 - Arc-factored: Eisner / MST
 - Beyond arc-factored: NP-hard
 - Approximations
 - ILP
 - Chart-parsing on defined subset

Summary

- Where we've been
 - Arc-factored: Eisner / MST
 - Beyond arc-factored: NP-hard
 - Approximations
 - ILP
 - Chart-parsing on defined subset
- What's next
 - The return of grammars?
 - Non-projective unsupervised parsing
 - Making models practical on web-scale

